ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
D. Saphier
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 275-289
Technical Paper | doi.org/10.13182/NSE72-A22414
Articles are hosted by Taylor and Francis Online.
A new hybrid method was developed for the solution of the one-dimensional time-dependent diffusion equation in four energy and four delayed-neutron groups. Using this method it is possible to reduce the cost per problem solved by an order of magnitude compared with commonly used digital methods. The solution is based on discretizing the multigroup diffusion equation with respect to the spatial variable while leaving the time variable continuous. The simple coupled time-dependent differential equations so obtained are integrated continuously and in parallel for each of the reactor regions. The regional boundary values are updated from iteration to iteration until convergence is obtained. Two examples are presented in which the hybrid and digital solutions are compared for a fast plutonium oxide fueled reactor. The agreement between the hybrid and digital solution is fairly good.