ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
D. Saphier
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 275-289
Technical Paper | doi.org/10.13182/NSE72-A22414
Articles are hosted by Taylor and Francis Online.
A new hybrid method was developed for the solution of the one-dimensional time-dependent diffusion equation in four energy and four delayed-neutron groups. Using this method it is possible to reduce the cost per problem solved by an order of magnitude compared with commonly used digital methods. The solution is based on discretizing the multigroup diffusion equation with respect to the spatial variable while leaving the time variable continuous. The simple coupled time-dependent differential equations so obtained are integrated continuously and in parallel for each of the reactor regions. The regional boundary values are updated from iteration to iteration until convergence is obtained. Two examples are presented in which the hybrid and digital solutions are compared for a fast plutonium oxide fueled reactor. The agreement between the hybrid and digital solution is fairly good.