ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
H. L. Dodds, Jr., J. C. Robinson, A. R. Buhl
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 262-274
Technical Paper | doi.org/10.13182/NSE72-A22413
Articles are hosted by Taylor and Francis Online.
A transfer and scattering matrix technique is used to solve one-dimensional, time-dependent, multigroup, discrete ordinates equations and those including the delayed-neutron equations. The solution is obtained in the frequency domain as a distributed parameter transfer function. This technique can accomodate anisotropic, spatially distributed extraneous sources and general anisotropic scattering. The numerical problems associated with the technique are analyzed, and a procedure is presented for controlling them. The results obtained with this technique are in good agreement with (a) statics results obtained from standard discrete ordinates calculations, and (b) experimental kinetics noise data obtained from a critical fast assembly. Calculated results of a simulated pulsed-neutron experiment on a subcritical fast assembly are presented.