ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
H. L. Dodds, Jr., J. C. Robinson, A. R. Buhl
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 262-274
Technical Paper | doi.org/10.13182/NSE72-A22413
Articles are hosted by Taylor and Francis Online.
A transfer and scattering matrix technique is used to solve one-dimensional, time-dependent, multigroup, discrete ordinates equations and those including the delayed-neutron equations. The solution is obtained in the frequency domain as a distributed parameter transfer function. This technique can accomodate anisotropic, spatially distributed extraneous sources and general anisotropic scattering. The numerical problems associated with the technique are analyzed, and a procedure is presented for controlling them. The results obtained with this technique are in good agreement with (a) statics results obtained from standard discrete ordinates calculations, and (b) experimental kinetics noise data obtained from a critical fast assembly. Calculated results of a simulated pulsed-neutron experiment on a subcritical fast assembly are presented.