ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
L. Barleon, E. A. Fischer
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 247-261
Technical Paper | doi.org/10.13182/NSE72-A22412
Articles are hosted by Taylor and Francis Online.
The pile oscillator technique was used to measure the Doppler effect with heated small samples in neutron spectra typical of steam cooled fast reactors. Samples of UO2 in various enrichments, especially depleted UO2, were measured up to 1000°K, and also samples of PuO2 diluted with Al2O3. The results were analyzed by a method which properly accounts for the resonance interaction between the hot sample and the cold environment. The results with the UO2 samples where 238U gives the major contribution to the Doppler effect were in agreement with calculations within about 10%, though changes of the effect between different assemblies, in some cases, were not well reproduced. The experiments with PuO2 samples were designed to give integral information on alpha of 239Pu in the range 0.1 to 5 keV. It is shown that experiment and calculation agree within about 25% if high alpha values similar to those of Gwin are used.