ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hiroshi Sekimoto, Kouichi Ryu, Yoshikane Yoshimura
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 306-317
Technical Note | doi.org/10.13182/NSE01-01
Articles are hosted by Taylor and Francis Online.
The new burnup strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy production) is proposed. With this burnup strategy, distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed and without any change in their shapes. The excess reactivity is constant during the burnup. Therefore, any control mechanisms for the burnup are not required. Calculation procedures are presented to find these shapes and the speed of the burning region with the neutron multiplication factor of a reactor employing this burnup strategy.To demonstrate the CANDLE burnup strategy, it is applied to a fast reactor with excellent neutron economy. Only the initially built reactor requires some fissile material such as plutonium or enriched uranium for the nuclear ignition region of its core, but only natural uranium or depleted uranium is required for the other region. Succeeding reactors require only natural or depleted uranium since the burning region of the previous reactor can be utilized for the ignition region. The life of a reactor can be made longer by elongating the core height. The drift speed of the burning region for the presented fast reactor design is ~4 cm/yr, which is a preferable value for designing a long-life reactor. The burnup of spent fuel is ~40%. It is equivalent to 40% utilization of natural uranium without reprocessing and enrichment.