ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. W. Shumway, D. M. McEligot
Nuclear Science and Engineering | Volume 46 | Number 3 | December 1971 | Pages 394-407
Technical Paper | doi.org/10.13182/NSE71-A22376
Articles are hosted by Taylor and Francis Online.
Numerical results for laminar gas flow in annuli, with fluid properties varying due to their temperature dependence, have been obtained for both fully developed and uniform entry velocity profiles by solving the coupled boundary layer equations in finite difference form. All annuli computations were made with a radius ratio of 0.25, which differs sufficiently from the limiting cases of circular tubes and parallel plates to portray annular geometry well. In addition to variable property results, predictions were obtained for three of four fundamental, constant property solutions with uniform entering velocity profiles. The fourth solution is available in the literature but the approximate velocity distribution is in error in the entrance region, so a new hydrodynamic solution is presented as well.