ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
F. V. Orestano, F. Pistella
Nuclear Science and Engineering | Volume 46 | Number 3 | December 1971 | Pages 376-384
Technical Paper | doi.org/10.13182/NSE71-A22374
Articles are hosted by Taylor and Francis Online.
The investigation of the neutron spectral effects in actual cell geometry in a plutonium-fueled lattice is the final step of a program undertaken at LFCR of CNEN on the investigation of the physics problems for the plutonium recycle in light water reactors. Spectral indices have been measured by foil activation techniques, in the fuel pins and in the moderator, both in a uniform lattice and in the presence of a cross-shaped water gap; the presence of the water gap reduces the value of the index 239Pu-fission/235U fission by about 8%. The measured values have been compared with the results of the design calculational methods as well as those of a more detailed method and agreement is good. In particular, it has been found that the use of two thermal-energy groups (in a five-group scheme) is necessary to describe properly the effect of water gaps on the plutonium effective cross sections. The 239Pu absorption rate has been evaluated from the measured spectral indices by applying a previously tested correlation method; the presence of the water gap also reduces the 239Pu absorption/235 U-fission-ratio by about 10%.