ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Katsuhei Kobayashi, Shuji Yamamoto, Samyol Lee, Hyun-Je Cho, Hajimu Yamana, Hirotake Moriyama, Yoshiaki Fujita, Toshiaki Mitsugashira
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 273-281
Technical Paper | doi.org/10.13182/NSE01-A2237
Articles are hosted by Taylor and Francis Online.
Use is made of a back-to-back type of double fission chamber and an electron linear accelerator-driven lead slowing-down spectrometer to measure the neutron-induced fission cross sections of 229Th and 231Pa below 10 keV relative to that of 235U. A measurement relative to the 10B(n, ) reaction is also made using a BF3 counter at energies below 1 keV and normalized to the absolute value obtained by using the cross section of the 235U(n,f) reaction between 200 eV and 1 keV.The experimental data of the 229Th(n,f) reaction, which was measured by Konakhovich et al., show higher cross-section values, especially at energies of 0.1 to 0.4 eV. The data by Gokhberg et al. seem to be lower than the current measurement above 6 keV. Although the evaluated data in JENDL-3.2 are in general agreement with the measurement, the evaluation is higher from 0.25 to 5 eV and lower above 10 eV. The ENDF/B-VI data evaluated above 10 eV are also lower. The current thermal neutron-induced fission cross section at 0.0253 eV is 32.4 ± 10.7 b, which is in good agreement with results of Gindler et al., Mughabghab, and JENDL-3.2.The mean value of the 231Pa(n,f) cross sections between 0.37 and 0.52 eV, which were measured by Leonard and Odegaarden, is close to the current measurement. The evaluated data in ENDF/B-VI are lower below 0.15 eV and higher above ~30 eV. The ENDF/B-VI and the JEF-2.2 are extremely higher above 1 keV. The JENDL-3.2 data are in general agreement with the measurement, although they are lower above ~100 eV.