ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
F. Jatuff, P. Grimm, O. Joneja, M. Murphy, A. Lüthi, R. Seiler, R. Brogli, R. Jacot-Guillarmod, T. Williams, S. Helmersson, R. Chawla
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 262-272
Technical Paper | doi.org/10.13182/NSE01-A2236
Articles are hosted by Taylor and Francis Online.
HELIOS, CASMO-4, and MCNP4B calculations of reaction rate distributions in a modern, fresh 10 × 10 boiling water reactor fuel element have been validated using the experimental results of the LWR-PROTEUS Phase I project corresponding to full-density water moderation conditions (core 1B). The reaction rate distributions measured with a special gamma-scanning machine employing twin germanium detectors consisted of total fission Ftot and 238U-capture C8. The average statistical errors for the gamma scans were better than 0.5% for Ftot and 0.9% for C8. The rod-by-rod measurements were performed on 60 different fuel rods selected from the central part of a test zone consisting of actual, fresh SVEA-96+ fuel elements, thus gaining in realism by departing from conventional fuel rod mockups. In the case of Ftot, the root-mean-square (rms) of the rod-by-rod distribution of differences between calculational and experimental (C-E) values has been found to be 1.1% for HELIOS and for CASMO-4, and 1.3% for MCNP4B. For C8, the rms values of the (C-E) distributions are 1.0, 1.3, and 1.4% as obtained with HELIOS, CASMO-4, and MCNP4B, respectively. The effects of using different data libraries (ENDF/B-V, ENDF/B-VI, and JEF-2.2) with MCNP4B were also studied and have been found to be small.