ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
F. Jatuff, P. Grimm, O. Joneja, M. Murphy, A. Lüthi, R. Seiler, R. Brogli, R. Jacot-Guillarmod, T. Williams, S. Helmersson, R. Chawla
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 262-272
Technical Paper | doi.org/10.13182/NSE01-A2236
Articles are hosted by Taylor and Francis Online.
HELIOS, CASMO-4, and MCNP4B calculations of reaction rate distributions in a modern, fresh 10 × 10 boiling water reactor fuel element have been validated using the experimental results of the LWR-PROTEUS Phase I project corresponding to full-density water moderation conditions (core 1B). The reaction rate distributions measured with a special gamma-scanning machine employing twin germanium detectors consisted of total fission Ftot and 238U-capture C8. The average statistical errors for the gamma scans were better than 0.5% for Ftot and 0.9% for C8. The rod-by-rod measurements were performed on 60 different fuel rods selected from the central part of a test zone consisting of actual, fresh SVEA-96+ fuel elements, thus gaining in realism by departing from conventional fuel rod mockups. In the case of Ftot, the root-mean-square (rms) of the rod-by-rod distribution of differences between calculational and experimental (C-E) values has been found to be 1.1% for HELIOS and for CASMO-4, and 1.3% for MCNP4B. For C8, the rms values of the (C-E) distributions are 1.0, 1.3, and 1.4% as obtained with HELIOS, CASMO-4, and MCNP4B, respectively. The effects of using different data libraries (ENDF/B-V, ENDF/B-VI, and JEF-2.2) with MCNP4B were also studied and have been found to be small.