ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Paul M. Keller, Paul J. Turinsky
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 235-247
Technical Paper | doi.org/10.13182/NSE01-A2234
Articles are hosted by Taylor and Francis Online.
A methodology has been developed whereby a three-dimensional (3-D) geometry, nodal expansion method (NEM), pressurized water reactor (PWR) core simulator model is collapsed to form an equivalent two-dimensional (2-D) geometry model that preserves approximately, but with negligible loss of fidelity, the global quantities and axially integrated reaction rates and surface currents of the 3-D model. In comparison with typical licensed-quality 3-D models, the 2-D collapsed NEM model typically requires a factor of 50 less computational time and exhibits root-mean-square (rms) assembly relative power fraction errors, as compared with the original 3-D model, of 5 × 10-3 over an entire fuel cycle, and average maximum errors over the fuel cycle of 1 × 10-2. The collapse methodology includes a pin reconstruction methodology, which exhibits assemblywise rms pin power errors of 5 × 10-3 and average maximum assemblywise pin power errors of 1.2 × 10-2. When coupled with FORMOSA-P's existing assembly power response generalized perturbation theory reactor core simulator, this permits loading-pattern evaluations at a speed approximately 100 to 150 times faster than full, 3-D models, providing the computational efficiency needed for efficient incore fuel management optimization using stochastic methods.