ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Paul M. Keller, Paul J. Turinsky
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 235-247
Technical Paper | doi.org/10.13182/NSE01-A2234
Articles are hosted by Taylor and Francis Online.
A methodology has been developed whereby a three-dimensional (3-D) geometry, nodal expansion method (NEM), pressurized water reactor (PWR) core simulator model is collapsed to form an equivalent two-dimensional (2-D) geometry model that preserves approximately, but with negligible loss of fidelity, the global quantities and axially integrated reaction rates and surface currents of the 3-D model. In comparison with typical licensed-quality 3-D models, the 2-D collapsed NEM model typically requires a factor of 50 less computational time and exhibits root-mean-square (rms) assembly relative power fraction errors, as compared with the original 3-D model, of 5 × 10-3 over an entire fuel cycle, and average maximum errors over the fuel cycle of 1 × 10-2. The collapse methodology includes a pin reconstruction methodology, which exhibits assemblywise rms pin power errors of 5 × 10-3 and average maximum assemblywise pin power errors of 1.2 × 10-2. When coupled with FORMOSA-P's existing assembly power response generalized perturbation theory reactor core simulator, this permits loading-pattern evaluations at a speed approximately 100 to 150 times faster than full, 3-D models, providing the computational efficiency needed for efficient incore fuel management optimization using stochastic methods.