ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Robert J. Howerton
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 42-52
Technical Paper | doi.org/10.13182/NSE71-A22334
Articles are hosted by Taylor and Francis Online.
A formalism developed in 1963 for predicting the energy dependence of the average neutron yield per fission, (E) for uranium isotopes but is inadequate for isotopes of other species. A revised formalism is presented which accounts for the Z dependence of ( E, A, Z) by inclusion of a first-order term in Z. The coefficient of the Z -dependence term is derived from consideration of detailed measurements of (E) for 239Pu. The resulting equation is used to calculate (E, A, Z) for isotopes of plutonium, uranium, thorium, and thermal values of americium isotopes. Uranium-235, -238, and 239Pu are the only isotopes which have detailed measurements of (E) over a large range in energy made by a single experimental group. The equation predicts these measured values of (E, A, Z) to better than 0.5% in first moment, and standard deviations better than 1.5% about the central point of the measurements. This suggests that the extended formalism is a useful tool for prediction of (E, A, Z) for isotopes having no measurement.