ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
W. K. Hagan, B. L. Colborn, T. W. Armstrong, M. Allen
Nuclear Science and Engineering | Volume 98 | Number 3 | March 1988 | Pages 272-278
Technical Note | doi.org/10.13182/NSE88-A22328
Articles are hosted by Taylor and Francis Online.
Neutron shielding calculations for a 70- to 250-MeV proton cancer therapy facility have been carried out using the High Energy Transport Code and the one-dimensional discrete ordinates code ANISN. Calculations were performed for iron and water targets with incident proton energies of 150, 200, and 250 MeV. The angular dependence of the neutron spectrum was taken into account by averaging and reporting the spectrum in angular bins of 0 to 15, 15 to 30, 30 to 45, 45 to 60, 60 to 90, and 90 to 180 deg relative to the forward direction of the protons. Each of these various spectra was used as the source spectrum for an individual ANISN run in which the source was placed at the center of a sphere of typical concrete (i.e., density of 2.3 g/cm3) and the dose equivalent per proton was calculated as a function of radius. These calculations differ from previous work primarily in the method used to calculate the neutron spectrum due to the interaction of the protons with the target and the transport cross sections used in the ANISN calculations.