ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
João Moreira, John C. Lee
Nuclear Science and Engineering | Volume 98 | Number 3 | March 1988 | Pages 244-254
Technical Paper | doi.org/10.13182/NSE88-A22325
Articles are hosted by Taylor and Francis Online.
Control rod worth measurements through the inverse kinetics equation depend on accurate determination of the amplitude function from detector signals. The modal-local method introduced in a previous study estimates space-time changes in the flux or shape function so that the amplitude function can be determined accurately and efficiently. A simple thermal-hydraulic feedback model is included in the modal-local method for at-power reactivity analysis. The method is tested with two simulated rod worth measurements: a zero-power rod drop experiment and a differential rod worth measurement in a power reactor. The modal-local method reproduces the reactivity obtained with the FX2-TH time-dependent diffusion theory code with an overall accuracy of 1 to 2%, except for simulated detectors located in the immediate vicinity of the rod motion.