ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
João Moreira, John C. Lee
Nuclear Science and Engineering | Volume 98 | Number 3 | March 1988 | Pages 244-254
Technical Paper | doi.org/10.13182/NSE88-A22325
Articles are hosted by Taylor and Francis Online.
Control rod worth measurements through the inverse kinetics equation depend on accurate determination of the amplitude function from detector signals. The modal-local method introduced in a previous study estimates space-time changes in the flux or shape function so that the amplitude function can be determined accurately and efficiently. A simple thermal-hydraulic feedback model is included in the modal-local method for at-power reactivity analysis. The method is tested with two simulated rod worth measurements: a zero-power rod drop experiment and a differential rod worth measurement in a power reactor. The modal-local method reproduces the reactivity obtained with the FX2-TH time-dependent diffusion theory code with an overall accuracy of 1 to 2%, except for simulated detectors located in the immediate vicinity of the rod motion.