ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. K. Moallemi, R. Viskanta
Nuclear Science and Engineering | Volume 98 | Number 3 | March 1988 | Pages 209-225
Technical Paper | doi.org/10.13182/NSE88-A22323
Articles are hosted by Taylor and Francis Online.
A model has been developed to predict the thermal hydraulics in the uncovered part of a pressurized water reactor core. The core is considered to be a heterogeneous porous medium with different permeabilities and effective thermal conductivities in the radial and axial directions. The flow in the core is modeled by the Brinkman-Forchheimer extended Darcy equations. The dependence of the thermophysical properties of the coolant (steam-hydrogen mixture) and the fuel rods with temperature is accounted for. Oxidation of the Zircaloy is also modeled, and transport of the generated hydrogen in the uncovered portion of the reactor core is considered. The effects of the thermal boundary condition at the outlet of the core (i.e., at the upper tie plate) are studied and reported. Partial blockage of the core due to the mechanical failure and/or melting of some of the fuel rods is also modeled, and its effects on the thermal hydraulics of the core are studied and discussed. Numerical simulations are reported for the Three Mile Island Unit 2 reactor conditions. The results show that the flow field in the core is affected by exothermic heat release as well as by a decrease of the coolant density due to the Zircaloy cladding oxidation. In addition, the results show that there is entrapment of the coolant from the upper plenum into the core. The partial blockage of the core was found to have a profound influence on the heatup of the core.