ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Yoshiro Asahi, Keisuke Okumura, Yasuo Ose
Nuclear Science and Engineering | Volume 139 | Number 1 | September 2001 | Pages 78-95
Technical Paper | doi.org/10.13182/NSE01-A2223
Articles are hosted by Taylor and Francis Online.
The rate equation for neutronic population is derived from the transient neutron diffusion equation. Neutronic imbalance is defined as the difference between the solution of the rate equation and the neutronic population obtained by spatial kinetics. If the transient neutron diffusion equation in the fully implicit formulation is discretized in such a manner as to satisfy the Gauss theorem and to retain a conservation form, neutronic imbalance decreases as the convergence criteria become strict. The iterative implicit method for neutronics and thermal hydraulics requires continuity of all the variables involved, which, in turn, facilitates the automatic time-step width control. From the viewpoints not only of well-posedness of a transient problem but also of code verification, a transient code should be capable of a null transient analysis for stable systems. Sample calculations are performed for a pressurized water reactor main-steam-line-break accident. An overall thermal-hydraulic trend model is conjectured to help compare and explain the calculated results. Spatial kinetics is found to clearly influence even the temporal behaviors of the secondary system.