ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Danny R. Tolar, Jr., Edward W. Larsen
Nuclear Science and Engineering | Volume 139 | Number 1 | September 2001 | Pages 47-65
Technical Paper | doi.org/10.13182/NSE01-A2221
Articles are hosted by Taylor and Francis Online.
An advanced multiple scattering algorithm for the Monte Carlo simulation of electron transport problems is developed. Unlike established multiple scattering algorithms, this new method, called transport condensed history (TCH), is a true transport process - it simulates a transport equation that approximates the exact Boltzmann transport process. In addition to having a larger mean free path and a more isotropic scattering operator than the Boltzmann equation, the approximate transport equation also preserves the zeroth- and first-order angular moments of the exact equation. These features enable TCH to accurately predict electron position as a function of energy (path length) and to move particles across material boundaries and interfaces with acceptable accuracy and efficiency. Numerical results and dose calculations are shown to reveal the advantages of TCH over conventional condensed history schemes.