ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Man Gyun Na
Nuclear Science and Engineering | Volume 138 | Number 3 | July 2001 | Pages 305-314
Technical Paper | doi.org/10.13182/NSE01-A2216
Articles are hosted by Taylor and Francis Online.
A receding horizon control method is applied to the axial power distribution control in a pressurized water reactor. The basic concept of receding horizon control is to solve on-line, at each sampling instant, an optimization problem for a finite future and to implement the first optimal control input as the current control input. Thus, it is a suitable control strategy for time-varying systems. The reactor model used for computer simulations is a two-point xenon oscillation model based on the nonlinear xenon and iodine balance equations and a one-group, one-dimensional, neutron diffusion equation with nonlinear power reactivity feedback that adequately describes axial oscillations and treats the nonlinearities explicitly. The reactor core is axially divided into two regions, and each region has one input and one output and is coupled with the other region. Through numerical simulations, it is shown that the proposed control algorithm exhibits very fast tracking responses due to the step and ramp changes of axial target shape and also works well in a time-varying parameter condition.