ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
H. Friess, G. Yadigaroglu
Nuclear Science and Engineering | Volume 138 | Number 2 | June 2001 | Pages 161-176
Technical Paper | doi.org/10.13182/NSE01-A2207
Articles are hosted by Taylor and Francis Online.
An idealized lattice structure is considered of multilayer aerosol deposits, where every particle at the deposit surface is associated with a resuspension rate constant depending on a statistically distributed particle parameter and on flow conditions. The response of this generic model is represented by a set of integrodifferential equations. As a first application of the general formalism, the behavior of Fromentin's multilayer model is analyzed, and the model parameters are adapted to experimental data. In addition, improved relations between model parameters and physical input parameters are proposed. As a second application, a method is proposed for building multilayer models by using resuspension rate constants of existing monolayer models. The method is illustrated by a sample of monolayer data resulting from the model of Reeks, Reed, and Hall. Also discussed is the error to be expected if a monolayer resuspension model, which works well for thin aerosol deposits, is applied to thick deposits under the classical monolayer assumption that all deposited particles interact with the fluid at all times.