ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
Ivan Kodeli
Nuclear Science and Engineering | Volume 138 | Number 1 | May 2001 | Pages 45-66
Technical Paper | doi.org/10.13182/NSE00-43
Articles are hosted by Taylor and Francis Online.
In the nuclear industry, an increased demand exists to provide modeling results with credible confidence bounds not only for simple but also for refined modeling. With the objective to facilitate and promote such analysis, a user-friendly and complete computer code package was developed comprising the multidimensional cross-section sensitivity and uncertainty code package SUSD3D, the secondary angular distribution (SAD) covariance data-processing module ERRORR34, and the cross-section covariance matrix library ZZ-VITAMIN-J/COVA.The discrete ordinates sensitivity formulation of the first-order perturbation theory is implemented in the SUSD3D code. Much effort was devoted to mitigate some drawbacks of the discrete ordinates-based sensitivity analysis, in particular to allow the analysis of complex geometries and to reduce memory requirements. The SUSD3D code is linked via interface files to a wide range of state-of-the-art transport codes suitable for complex radiation transport and facility design studies (like ANISN, DOT-3.5, DANTSYS, DORT, and TORT) and supports the new cross-section and covariance data formats. The SAD and secondary energy distribution effects can be taken into account. The complete SAD covariance matrices, as available in the European Fusion File evaluations (EFF-2 and -3) can be treated. The computer codes are written in FORTRAN-77 and run under DOS (PC), UNIX (workstations), VMS (VAX), and other compatible operating systems.The code system is extensively used to study fission- and fusion-related problems. The validation and several practical applications of the package are presented, including the reactor pressure vessel surveillance uncertainty studies, and ASPIS-iron, VENUS-3, and FNG benchmark experiment analyses.