ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
E. P. E. Michael, J. Dorning, Rizwan-Uddin
Nuclear Science and Engineering | Volume 137 | Number 3 | March 2001 | Pages 380-399
Technical Paper | doi.org/10.13182/NSE137-380
Articles are hosted by Taylor and Francis Online.
The computational efficiencies of two nodal integral methods for the numerical solution of linear convection-diffusion equations are studied. Although the first, which leads to a second-order spatial truncation error, has been reported earlier, it is reviewed in order to lead logically to the development here of the second, which has a third-order error. This third-order nodal integral method is developed by introducing an upwind approximation for the linear terms in the "pseudo-sources" that appear in the transverse-averaged equations introduced in the formulation of nodal integral methods. This upwind approximation obviates the need to develop and solve additional equations for the transverse-averaged first moments of the unknown, as would have to be done in a more straightforwardly developed higher-order nodal integral method. The computational efficiencies of the second-order nodal method and the third-order nodal method - of which there are two versions: one, a full third-order method and the other, which uses simpler second-order equations near the boundaries - are compared with those of both a very traditional method and a recently developed state-of-the-art method. Based on the comparisons reported here for a challenging recirculating flow benchmark problem it appears that, among the five methods studied, the second-order nodal integral method has the highest computational efficiency (the lowest CPU computing times for the same accuracy requirements) in the practical 1% error regime.