ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Trinity Test at 80: American Nuclear Society CEO Craig Piercy reflects on the Manhattan Project
By Craig H. Piercy, CEO and Executive Director of the American Nuclear Society
Eighty years ago today, at exactly 5:29:45 a.m. local time* on July 16, 1945, the United States Army detonated the world’s first nuclear bomb in the Jornada del Muerto desert of southern New Mexico. The searing flash and thunderous shockwave marked the culmination of the Manhattan Project, a secret, three-year national effort to harness nuclear fission and hasten the end of the Second World War.
The Trinity test, overseen by Manhattan Project director Major General Leslie Groves and Los Alamos Laboratory director Dr. J. Robert Oppenheimer, was the final act of that race to build the atomic bomb. Hoisted atop a 100-foot steel tower, the plutonium implosion device, known as the Gadget, unleashed a blast equal to 21,000 tons of TNT and temperatures hotter than the center of the Sun.
From ten miles away, observers wearing darkened welder goggles, looked on in stunned silence. “We knew the world would not be the same,” recalled Oppenheimer.
K. Wisshak, F. Voss, F. Käppeler
Nuclear Science and Engineering | Volume 137 | Number 2 | February 2001 | Pages 183-193
Technical Paper | doi.org/10.13182/NSE01-A2184
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of 232Th has been measured in the energy range from 5 to 225 keV at the Karlsruhe 3.7-MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced via the 7Li(p,n)7Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4 barium fluoride detector. The main difficulty in this experiment is the detection of true capture events characterized by a comparably low binding energy of 4.78 MeV in the presence of the high-energy gamma background (up to 3.96 MeV) associated with the decay chain of the natural thorium sample. With the high efficiency and the good energy resolution of the 4 detector, the sum energy peak of the capture cascades could be reliably separated from the background over the full range of the neutron spectrum, yielding cross-section uncertainties of ~2% above 20 keV and of 4% at 5 keV. The clear identification of the various background components represents a significant improvement compared to existing data for which sometimes high accuracy was claimed, but which were found to be severely discrepant. A comparison to the evaluated files shows reasonable agreement in the energy range above 15 keV, but also severe discrepancies of up to 40% at lower neutron energies.