ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Jie Zheng, Tong Guo, G. Ivan Maldonado
Nuclear Science and Engineering | Volume 137 | Number 2 | February 2001 | Pages 156-172
Technical Paper | doi.org/10.13182/NSE01-A2182
Articles are hosted by Taylor and Francis Online.
A linear superposition model (LSM) for the speedy and accurate estimation of lattice-physics parameters during within-bundle "pin-by-pin" loading optimization calculations of light water reactor nuclear fuel assemblies has been developed. The LSM has been implemented into the FORMOSA-L code, and typical results show that the run-time requirements can be reduced by at least an order of magnitude relative to performing direct lattice-physics evaluations with the CPM-2 or CASMO-3 code. Moreover, the speedups noted include all overhead expenses associated with the direct lattice-physics calculations required to construct the LSM sensitivity libraries. Additionally, accuracy improvements to the LSM are achieved by inclusion of higher-order cross terms and via quadratic interpolation when perturbing continuous variables. Also, it is shown that the errors generated by this first-order accurate technique can be kept well under control by treating material and spatial shuffles separately during optimizations. The results obtained indicate that the LSM can effectively substitute for direct lattice-physics evaluations throughout the entire optimization process without noticeable loss of fidelity. Finally, both synchronous and asynchronous implementations of parallel computing via the remote-procedure-call approach have been studied to further speed up the creation of LSM sensitivity libraries within FORMOSA-L.