ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Trinity Test at 80: American Nuclear Society CEO Craig Piercy reflects on the Manhattan Project
By Craig H. Piercy, CEO and Executive Director of the American Nuclear Society
Eighty years ago today, at exactly 5:29:45 a.m. local time* on July 16, 1945, the United States Army detonated the world’s first nuclear bomb in the Jornada del Muerto desert of southern New Mexico. The searing flash and thunderous shockwave marked the culmination of the Manhattan Project, a secret, three-year national effort to harness nuclear fission and hasten the end of the Second World War.
The Trinity test, overseen by Manhattan Project director Major General Leslie Groves and Los Alamos Laboratory director Dr. J. Robert Oppenheimer, was the final act of that race to build the atomic bomb. Hoisted atop a 100-foot steel tower, the plutonium implosion device, known as the Gadget, unleashed a blast equal to 21,000 tons of TNT and temperatures hotter than the center of the Sun.
From ten miles away, observers wearing darkened welder goggles, looked on in stunned silence. “We knew the world would not be the same,” recalled Oppenheimer.
Jan Wallenius, Kamil Tucek, Johan Carlsson, Waclaw Gudowski
Nuclear Science and Engineering | Volume 137 | Number 1 | January 2001 | Pages 96-106
Technical Note | doi.org/10.13182/NSE01-A2178
Articles are hosted by Taylor and Francis Online.
The application of burnable absorbers (BAs) to minimize power peaking, reactivity loss, and capture-to-fission probabilities in an accelerator-driven waste transmutation system has been investigated. Boron-10-enriched B4C absorber rods were introduced into a lead-bismuth-cooled core fueled with transuranic (TRU) discharges from light water reactors to achieve the smallest possible power peakings at beginning-of-life (BOL) subcriticality level of 0.97. Detailed Monte Carlo simulations show that a radial power peaking equal to 1.2 at BOL is attainable using a four-zone differentiation in BA content. Using a newly written Monte Carlo burnup code, reactivity losses were calculated to be 640 pcm per percent TRU burnup for unrecycled TRU discharges. Comparing to corresponding values in BA-free cores, BA introduction diminishes reactivity losses in TRU-fueled subcritical cores by ~20%. Radial power peaking after 300 days of operation at 1200-MW thermal power was <1.75 at a subcriticality level of ~0.92, which appears to be acceptable, with respect to limitations in cladding and fuel temperatures. In addition, the use of BAs yields significantly higher fission-to-capture probabilities in even-neutron-number nuclides. Fission-to-absorption probability ratio for 241Am equal to 0.33 was achieved in the configuration studied. Hence, production of the strong alpha-emitter 242Cm is reduced, leading to smaller fuel-swelling rates and pin pressurization. Disadvantages following BA introduction, such as increase of void worth and decrease of Doppler feedback in conjunction with small values of eff, need to be addressed by detailed studies of subcritical core dynamics.