ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tomohiko Iwasaki, Toshimitu Horiuchi, Daisuke Fujiwara, Hironobu Unesaki, Seiji Shiroya, Masatoshi Hayashi, Hiroshi Nakamura, Takanori Kitada, Nobuo Shinohara
Nuclear Science and Engineering | Volume 136 | Number 3 | November 2000 | Pages 321-339
Technical Paper | doi.org/10.13182/NSE00-A2162
Articles are hosted by Taylor and Francis Online.
Capture reaction rate ratios of 237Np relative to 197Au were measured in 11 thermal neutron fields provided by the Kyoto University Critical Assembly and the Kyoto University Reactor Heavy Water Neutron Irradiation Facility. In the measurement, both samples of 237Np and 197Au were irradiated at the same time, and their gamma activities were measured. The typical experimental error was 3.5%. The analysis was performed by three steps: full-core calculation, self-shielding correction of the sample, and perturbation correction of the sample. Three full-core calculations by a continuous-energy Monte Carlo code (MVP), a transport code (TWOTRAN), and a diffusion code (CITATION) were made with the JENDL-3.2 library. The self-shielding factors were derived by an analytical formula, and the perturbation factors were calculated by another MVP calculation. The reaction rates were derived by multiplying the neutron spectrum, the two correction factors, and the capture cross sections of 237Np and 197Au.As a result, the three full-core calculations provided almost the same neutron spectra at the sample position and gave almost the same calculated-to-experimental values (C/Es) for the capture reaction rate ratios of 237Np relative to 197Au. Based on the capture cross section of 237Np taken from the JENDL-3.2 library, the C/Es were between 0.97 and 1.04, and the average C/E among the 11 cores was 1.01. On the other hand, the C/Es using the ENDF/B-VI and the JEF-2.2 were 1.02 to 1.06 for harder spectrum cores, whereas the C/Es for the softer spectrum cores were 1.08 to 1.16. It is concluded that the JENDL-3.2 library has good accuracy for the capture cross section of 237Np but the ENDF/B-VI and the JEF-2.2 libraries overestimate that of 237Np >10% in the thermal neutron energy region.