ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Alexander G. Parlos, Fetiye O. Onbasioglu, John D. Metzger
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 227-246
Technical Paper | doi.org/10.13182/NSE00-A2154
Articles are hosted by Taylor and Francis Online.
The reliability of static space nuclear power systems (SNPSs) could be improved through the use of backup devices in addition to shunt regulators, as currently proposed for load following. Shunt regulator failure leading to reactor shutdown is possible, as is the possible need to deliver somewhat higher power level to the load than originally expected. A backup system is proposed in SNPSs to eliminate the possibility of a single-point failure in the shunt regulators and to increase the overall system power delivery capability despite changing mission needs and component characteristics. The objective of this paper is to demonstrate the feasibility of such a backup device for voltage regulation in static SNPSs that is capable of overcoming system variations resulting from operation at different power levels. A dynamic compensator is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery method. The resulting compensators are gain scheduled using the SNPS electric power as the scheduling variable, resulting in a nonlinear compensator. The performance of the gain-scheduled compensator is investigated extensively using an SNPS simulator. The simulations demonstrate the effects of the fuel temperature reactivity coefficient variations on the load-following capabilities of the SNPS. Robustness analysis results demonstrate that the proposed controller exhibits significant operational flexibility, and it can be considered for long-term space mission requiring significant levels of autonomy.