ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Kirk A. Mathews, Rodney L. Miller, Charles R. Brennan
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 178-201
Technical Paper | doi.org/10.13182/NSE00-A2152
Articles are hosted by Taylor and Francis Online.
The linear characteristic (LC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. For each ordinate in a discrete ordinates sweep, each cell is split into subcells along a line parallel to the ordinate. Direct affine transformations among appropriate oblique Cartesian coordinate systems for the faces and interior of each cell and subcell are used to simplify the characteristic transport through each subcell. This approach is straightforward and eliminates computationally expensive trigonometric functions. An efficient and well-conditioned technique for evaluating the required integral moments of exponential functions is presented. Various test problems are used to demonstrate (a) the approach to cubic convergence as the mesh is refined, (b) insensitivity to the details of irregular meshes, and (c) numerical robustness. These tests also show that meshes should represent volumes of regions with curved as well as planar boundaries exactly and that cells should have optical thicknesses throughout the mesh that are more or less equal. A hybrid Monte Carlo/discrete ordinates method, together with MCNP, is used to distinguish between error introduced by the angular and the spatial quadratures. We conclude that the LC method should be a practical and reliable scheme for these meshes, presuming that the cells are not optically too thick.