ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Kirk A. Mathews, Rodney L. Miller, Charles R. Brennan
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 178-201
Technical Paper | doi.org/10.13182/NSE00-A2152
Articles are hosted by Taylor and Francis Online.
The linear characteristic (LC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. For each ordinate in a discrete ordinates sweep, each cell is split into subcells along a line parallel to the ordinate. Direct affine transformations among appropriate oblique Cartesian coordinate systems for the faces and interior of each cell and subcell are used to simplify the characteristic transport through each subcell. This approach is straightforward and eliminates computationally expensive trigonometric functions. An efficient and well-conditioned technique for evaluating the required integral moments of exponential functions is presented. Various test problems are used to demonstrate (a) the approach to cubic convergence as the mesh is refined, (b) insensitivity to the details of irregular meshes, and (c) numerical robustness. These tests also show that meshes should represent volumes of regions with curved as well as planar boundaries exactly and that cells should have optical thicknesses throughout the mesh that are more or less equal. A hybrid Monte Carlo/discrete ordinates method, together with MCNP, is used to distinguish between error introduced by the angular and the spatial quadratures. We conclude that the LC method should be a practical and reliable scheme for these meshes, presuming that the cells are not optically too thick.