ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
L. Gilli, D. Lathouwers, J. L. Kloosterman, T. H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 172-187
Technical Paper | doi.org/10.13182/NSE12-92
Articles are hosted by Taylor and Francis Online.
In this paper we present the derivation and the application of an adaptive nonintrusive spectral technique for uncertainty quantification. Spectral techniques can be used to reconstruct stochastic quantities of interest by means of a Fourier-like expansion. Their application to uncertainty propagation problems can be performed in a nonintrusive fashion by evaluating a set of projection integrals that is used to reconstruct the spectral expansion. We present the derivation of a new adaptive quadrature algorithm, based on the definition of a sparse grid, which can be used to evaluate these spectral coefficients. This new adaptive algorithm is applied to a reference uncertainty quantification problem consisting of a coupled time-dependent model. The benefits of using such an adaptive method are analyzed and discussed from the uncertainty propagation and computational points of view.