ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Hideyuki Hosokawa, Makoto Nagase, Motomasa Fuse, Yutaka Watanabe
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 135-148
Technical Paper | doi.org/10.13182/NSE12-80
Articles are hosted by Taylor and Francis Online.
The formation process of a ferrite oxide film (which can effectively suppress radioactive nuclide deposition on piping surfaces) was evaluated from the viewpoints of forming optimum film structures and reducing waste disposal. Both pH and oxidation-reduction potential (ORP) of ferrite film formation solution were found to be important, and the film formation process could be understood on the basis of a Pourbaix diagram of the iron-water system. To make a thin and closely packed oxide film, the pH and ORP values should be maintained within the magnetite stability domain by controlling the hydrazine concentration, which promotes the film formation reactions. Use of chemical solutions such as formic acid and hydrazine was confirmed to get catalyst decomposition into easily handled substances. This film formation process could be evaluated taking into consideration the charge balance and chemical equilibrium equations of each reaction involved in the film formation. It was clarified that preoxidation of the ferrite film under certain oxidizing water chemistry conditions (such as normal water chemistry) in boiling water reactors could further improve the film cobalt deposition suppression performance due to the formation of hematite. Our selected film forming process and waste solution decomposition conditions were confirmed using the simulated flow system apparatus of one-tenth actual plant scale. The method was applied to the actual plant just after the chemical decontamination. After one cycle elapsed, dose rate of the reactor recirculation system piping coated with ferrite film was half that before the ferrite film was formed.