ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hideyuki Hosokawa, Makoto Nagase, Motomasa Fuse, Yutaka Watanabe
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 135-148
Technical Paper | doi.org/10.13182/NSE12-80
Articles are hosted by Taylor and Francis Online.
The formation process of a ferrite oxide film (which can effectively suppress radioactive nuclide deposition on piping surfaces) was evaluated from the viewpoints of forming optimum film structures and reducing waste disposal. Both pH and oxidation-reduction potential (ORP) of ferrite film formation solution were found to be important, and the film formation process could be understood on the basis of a Pourbaix diagram of the iron-water system. To make a thin and closely packed oxide film, the pH and ORP values should be maintained within the magnetite stability domain by controlling the hydrazine concentration, which promotes the film formation reactions. Use of chemical solutions such as formic acid and hydrazine was confirmed to get catalyst decomposition into easily handled substances. This film formation process could be evaluated taking into consideration the charge balance and chemical equilibrium equations of each reaction involved in the film formation. It was clarified that preoxidation of the ferrite film under certain oxidizing water chemistry conditions (such as normal water chemistry) in boiling water reactors could further improve the film cobalt deposition suppression performance due to the formation of hematite. Our selected film forming process and waste solution decomposition conditions were confirmed using the simulated flow system apparatus of one-tenth actual plant scale. The method was applied to the actual plant just after the chemical decontamination. After one cycle elapsed, dose rate of the reactor recirculation system piping coated with ferrite film was half that before the ferrite film was formed.