ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
B. Becker, A. Weltz, J. A. Kulisek, J. Thompson, N. Thompson, Y. Danon
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 124-134
Technical Paper | doi.org/10.13182/NSE12-66
Articles are hosted by Taylor and Francis Online.
The use of a lead slowing-down spectrometer (LSDS) is considered as a possible option for nondestructive assay of fissile material of used nuclear fuel. The primary objective is to quantify fissile isotopes, particularly 239Pu and 235U, via a direct measurement distinguishing them through their characteristic fission spectra in the LSDS. In this paper, we present several assay measurements performed at the Rensselaer Polytechnic Institute (RPI) to support ongoing feasibility studies of the method and to provide benchmark experiments for Monte Carlo calculations of the assay system. A fresh uranium oxide fuel rod from the RPI Walthousen Reactor Critical Facility, a 239Pu-Be source, and several highly enriched 235U disks were assayed in the LSDS. The characteristic fission spectra were measured with 238U and 232Th threshold fission chambers, which are primarily sensitive to fission neutrons with energies above the threshold. Despite the constant neutron and gamma background from the Pu-Be source and the intense interrogation neutron flux, the LSDS system was able to measure the characteristic 235U and 239Pu responses. All measurements were compared to Monte Carlo simulations complementing previous modeling-based studies. It is shown that the available simulation tools and models are well suited to simulate the assay. An absolute calibration technique of the LSDS, which is required to perform quantitative measurements of the assayed fissile materials, is presented.