ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
B. Becker, A. Weltz, J. A. Kulisek, J. Thompson, N. Thompson, Y. Danon
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 124-134
Technical Paper | doi.org/10.13182/NSE12-66
Articles are hosted by Taylor and Francis Online.
The use of a lead slowing-down spectrometer (LSDS) is considered as a possible option for nondestructive assay of fissile material of used nuclear fuel. The primary objective is to quantify fissile isotopes, particularly 239Pu and 235U, via a direct measurement distinguishing them through their characteristic fission spectra in the LSDS. In this paper, we present several assay measurements performed at the Rensselaer Polytechnic Institute (RPI) to support ongoing feasibility studies of the method and to provide benchmark experiments for Monte Carlo calculations of the assay system. A fresh uranium oxide fuel rod from the RPI Walthousen Reactor Critical Facility, a 239Pu-Be source, and several highly enriched 235U disks were assayed in the LSDS. The characteristic fission spectra were measured with 238U and 232Th threshold fission chambers, which are primarily sensitive to fission neutrons with energies above the threshold. Despite the constant neutron and gamma background from the Pu-Be source and the intense interrogation neutron flux, the LSDS system was able to measure the characteristic 235U and 239Pu responses. All measurements were compared to Monte Carlo simulations complementing previous modeling-based studies. It is shown that the available simulation tools and models are well suited to simulate the assay. An absolute calibration technique of the LSDS, which is required to perform quantitative measurements of the assayed fissile materials, is presented.