ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
V. Pascal, G. Prulhière, M. Vanier, B. Fontaine
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 109-123
Technical Paper | doi.org/10.13182/NSE12-19
Articles are hosted by Taylor and Francis Online.
Before the definitive shutdown of the prototype Phénix, a final set of experiments was performed to gather important data about the operation and safety of sodium-cooled fast reactors (SFRs).Among the accident sequences that are to be taken into account, inadvertent withdrawal of a control rod is considered. During operation at nominal power, such a sequence induces a general power increase and local deformations of the power shape. Afterward, local fuel temperature increases can thereby lead to fuel melting and clad failure.The quasi-static control rod withdrawal test was specially designed to gather local power data on fissile assemblies and to complete validation databases of neutronic codes. The maximal deformation of the power shape reached ±12% and was obtained when two control rods were shifted in opposite directions.The test analysis was conducted with the neutronics code ERANOS-2.2. Comparisons between calculated and measured values were satisfying. Most of the discrepancies in power estimation can be explained by measurement problems (heat transfer, sodium mixing).The association of ERANOS-2.2 and the nuclear library JEFF-3.1, presently used for the predesign phase of the ASTRID reactor, constitutes an acceptable predictive tool for local and integral parameter estimations in SFRs, specifically in the evaluation of the control rod withdrawal incident.