ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
V. Pascal, G. Prulhière, M. Vanier, B. Fontaine
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 109-123
Technical Paper | doi.org/10.13182/NSE12-19
Articles are hosted by Taylor and Francis Online.
Before the definitive shutdown of the prototype Phénix, a final set of experiments was performed to gather important data about the operation and safety of sodium-cooled fast reactors (SFRs).Among the accident sequences that are to be taken into account, inadvertent withdrawal of a control rod is considered. During operation at nominal power, such a sequence induces a general power increase and local deformations of the power shape. Afterward, local fuel temperature increases can thereby lead to fuel melting and clad failure.The quasi-static control rod withdrawal test was specially designed to gather local power data on fissile assemblies and to complete validation databases of neutronic codes. The maximal deformation of the power shape reached ±12% and was obtained when two control rods were shifted in opposite directions.The test analysis was conducted with the neutronics code ERANOS-2.2. Comparisons between calculated and measured values were satisfying. Most of the discrepancies in power estimation can be explained by measurement problems (heat transfer, sodium mixing).The association of ERANOS-2.2 and the nuclear library JEFF-3.1, presently used for the predesign phase of the ASTRID reactor, constitutes an acceptable predictive tool for local and integral parameter estimations in SFRs, specifically in the evaluation of the control rod withdrawal incident.