ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. W. Schaefer
Nuclear Science and Engineering | Volume 116 | Number 2 | February 1994 | Pages 96-112
Technical Paper | doi.org/10.13182/NSE94-A21486
Articles are hosted by Taylor and Francis Online.
The probability that reactivity feedbacks will fail to prevent damage is computed by propagating data and modeling uncertainties through transient calculations, with these uncertainties being constrained by experimental evidence. Screening processes are used to identify the most important parameters and accident initiators. The notion of treating an accident initiator in a probabilistic manner is introduced. The response surface method is used to facilitate the error propagation, and a Monte Carlo rejection technique is used to force the parameter variations to be consistent with the observed distribution of experimental quantities. The reliability of the failure probability estimates is evaluated. This method is illustrated by analyzing anticipated transients without scram for the Experimental Breeder Reactor II. The rod run-in initiator is represented by using a reactivity insertion magnitude distribution, a much less threatening and more realistic description than the technical specification limit on rod worths. Reactivity feedbacks are shown to reduce damage frequencies by orders of magnitude, and the experimental constraints are found to have a large effect.