ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Y. Ikeda, C. Konno, H. Maekawa
Nuclear Science and Engineering | Volume 116 | Number 1 | January 1994 | Pages 19-27
Technical Paper | doi.org/10.13182/NSE94-A21477
Articles are hosted by Taylor and Francis Online.
In view of the importance of so-called “sequential reactions”in fusion reactor structural materials, the production of radioactivity due to sequential reactions associated with protons emitted via (n,xp) reactions with 14.9-MeV neutrons has been measured. The effective production yields with respect to 14.9-MeV incident neutrons produced by sequential reactions were obtained for the radio active products of 48 V, 56Co, and 64Zn in titanium, iron, and copper, respectively. The values were 14.7 ± 1.9, 4.6 ±0.3, and 11.4 ± 1.9 μb, respectively. The effective production cross section was estimated on the basis of all relevant data on (n,xp) and (p,n) cross sections, proton emission spectra, and the proton stopping power in these materials. This analysis gave values 22% larger, 29% smaller, and a factor of 5.6 smaller than the measured values for these reactions, respectively. The range of these discrepancies is not unreasonable considering the large uncertainties in the data base used in the estimation.