ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Joong Seok Suh, Samuel H. Levine
Nuclear Science and Engineering | Volume 105 | Number 4 | August 1990 | Pages 371-382
Technical Paper | doi.org/10.13182/NSE90-A21471
Articles are hosted by Taylor and Francis Online.
An efficient reload core design method, applicable to a commercial pressurized water reactor, has been developed. The objective of the reload core design is to achieve the maximum cycle length. The optimization of the reload core design is effected in three stages:. Use a linear programming method to find an optimum beginning-of-cycle (BOC) k∞ distribution, which yields maximum keffat the end of cycle when depleted by the Haling power distribution. Individual fuel assemblies are then loaded into the core using the optimum BOC k∞ distribution as a guide. Compute the optimum burnable poison requirements in parts per million/billion and their corresponding boron carbide weight percents for the fresh fuel assemblies using the gradient projection method. Deplete the optimum design using an accurate analysis. The application of the method to Three Mile Island Unit 1 (TMI-1) cycles 5 and 6 has shown that an optimum loading pattern for maximum cycle length is a low-leakage core. Compared with the TMI-1 loading patterns, the optimization has yielded an increase in cycle length by 12 effective full-power days (EFPDs) in cycle 6 and 41 EFPDs in cycle 5 plus saving about $3 million in fuel cost. The reason for the greater improvement in cycle 5 is that the cycle 5 loading pattern was a high-leakage core and the optimum design is a low-leakage core. The computer time required for computing one reload core design is ∼400 s on the IBM-3090 computer.