ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
W. Breitung, S. A. Wright
Nuclear Science and Engineering | Volume 105 | Number 4 | August 1990 | Pages 303-318
Technical Paper | doi.org/10.13182/NSE90-A21467
Articles are hosted by Taylor and Francis Online.
Irradiated (U.Pu)-mixed oxide with 5% burnup was heated in the pulsed Annular Core Research Reactor at Sandia National Laboratories. The tests were typical of prompt Bethe-Tait excursions in terms of heating method (nuclear fission), heating period (milliseconds), and temperatures attained (up to 7700 K). Fission products provided high pressures at temperatures at which fresh fuel shows only a negligible vapor pressure. Fission product release became measurable as soon as the temperature exceeded the steady-state irradiation temperature of the fuel sample. The fission product pressures reached 1.3 to 2.5 MPa at 3000 K over solid fuel, and 2.5 to 5 MPa at 4000 K over liquid fuel. The total amount of fission product released corresponded to ∼30 to 75% of the fission gas inventory. The amount of fission product released increased with the fuel heating rate. Under rapid heating, the total pressure over irradiated (U,Pu) oxide is controlled by a suppression mechanism. At any given temperature, the gaseous components (xenon, cesium, and ambient gas) suppress fuel boiling if their pressure pgas is higher than the fresh fuel saturation vapor pressure psat of unirradiated fuel. If psat exceeds pgas, the total pressure is, to a first approximation, equal to Psat. Under millisecond heating, the total pressure from irradiated fuel may be taken as ptot = max(Pgas,Psat).