ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
D. G. Cacuci, E. Wacholder
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 461-468
Technical Note | doi.org/10.13182/NSE82-A21460
Articles are hosted by Taylor and Francis Online.
A rigorous formalism is presented for sensitivity analysis of functional-type responses associated with the well-posed system of quasi-linear partial differential equations (PDEs) of hyperbolic type that describe one-dimensional, two-phase flows. The rigor and generality of this formalism stem from the use of G differentials. In particular, it is possible to treat discontinuities and parameters that are functions rather than scalars. This formalism uses adjoint functions to determine efficiently sensitivities to many parameter variations. The adjoint system satisfied by these adjoint functions is explicitly determined and shown to be solvable as a well-posed system of linear first-order PDEs possessing the same characteristics as the original quasi-linear PDEs. For completeness, a general solution of this adjoint system is obtained by using the method of characteristics. The physical meaning of this sensitivity analysis formalism is illustrated by an application to the homogeneous equilibrium model for two-phase flow. Although this formalism does not address transition phenomena between single- and two-phase flow regimes and ignores higher order effects of parameter variations, it provides a complete theoretical framework for implementing an efficient sensitivity analysis capability into one-dimensional, two-phase flow models.