ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
D. G. Cacuci, E. Wacholder
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 461-468
Technical Note | doi.org/10.13182/NSE82-A21460
Articles are hosted by Taylor and Francis Online.
A rigorous formalism is presented for sensitivity analysis of functional-type responses associated with the well-posed system of quasi-linear partial differential equations (PDEs) of hyperbolic type that describe one-dimensional, two-phase flows. The rigor and generality of this formalism stem from the use of G differentials. In particular, it is possible to treat discontinuities and parameters that are functions rather than scalars. This formalism uses adjoint functions to determine efficiently sensitivities to many parameter variations. The adjoint system satisfied by these adjoint functions is explicitly determined and shown to be solvable as a well-posed system of linear first-order PDEs possessing the same characteristics as the original quasi-linear PDEs. For completeness, a general solution of this adjoint system is obtained by using the method of characteristics. The physical meaning of this sensitivity analysis formalism is illustrated by an application to the homogeneous equilibrium model for two-phase flow. Although this formalism does not address transition phenomena between single- and two-phase flow regimes and ignores higher order effects of parameter variations, it provides a complete theoretical framework for implementing an efficient sensitivity analysis capability into one-dimensional, two-phase flow models.