ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
S. Pelloni
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 458-461
Technical Note | doi.org/10.13182/NSE82-A21459
Articles are hosted by Taylor and Francis Online.
In this Note a new iterative method for solving the monoenergetic diffusion equation is presented. Experience has shown that the usual iterative methods used to solve the resulting equations either do not converge at all or the number of inner iterations becomes too large when a high-order approximation is used for the spatial flux. Our aim therefore has been to develop a new iterative method that leads to a small number of iterations even for a high order of spatial flux approximation. The present method is additionally expedited using Chebyshev or Wagner and Andrzejewski procedures, which are compared.The SAPHIR benchmark test case with a fixed volume source was used for calculations because it is difficult to converge. It is shown that the present method needs almost the same number of iterations for Lagrangian flux approximation of first to fourth order. This number is smaller than 53. The Chebyshev procedure, which was the most effective, halved the number of inner iterations.