ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
S. Pelloni
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 458-461
Technical Note | doi.org/10.13182/NSE82-A21459
Articles are hosted by Taylor and Francis Online.
In this Note a new iterative method for solving the monoenergetic diffusion equation is presented. Experience has shown that the usual iterative methods used to solve the resulting equations either do not converge at all or the number of inner iterations becomes too large when a high-order approximation is used for the spatial flux. Our aim therefore has been to develop a new iterative method that leads to a small number of iterations even for a high order of spatial flux approximation. The present method is additionally expedited using Chebyshev or Wagner and Andrzejewski procedures, which are compared.The SAPHIR benchmark test case with a fixed volume source was used for calculations because it is difficult to converge. It is shown that the present method needs almost the same number of iterations for Lagrangian flux approximation of first to fourth order. This number is smaller than 53. The Chebyshev procedure, which was the most effective, halved the number of inner iterations.