ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Stanley E. Turner, Marva K. Gurley
Nuclear Science and Engineering | Volume 80 | Number 2 | February 1982 | Pages 230-237
Technical Paper | doi.org/10.13182/NSE82-A21427
Articles are hosted by Taylor and Francis Online.
The AMPX-KENO computer code package is commonly used to evaluate criticality in high-density spent fuel storage rack designs. Consequently, it is important to know the reliability that can be placed on such calculations and whether or not the results are conservative. Recent critical experiments by the Babcock & Wilcox Company (B&W) provide data on configurations with thin absorbers containing boron that are more nearly representative of poisoned spent fuel storage rack designs than were earlier critical experiments. A series of AMPX-KENO calculations has been made on selected critical experiments and the results compared with similar analyses reported in the literature by the Oak Ridge National Laboratory and B&W. Within the normal statistical variation of KENO calculations, results confirm that there is no apparent difference in the versions of AMPX-KENO and the 123-group GAM-THERMOS libraries used at three different computer installations. Evaluation of the calculational results provides evidence for a statistically significant trend toward overprediction of reactivity with increasing reactivity worth of thin plates of boron-containing material. Similarly, statistical analyses reveal a trend toward underprediction of reactivity with increasing water-gap spacing between fuel assemblies. For most realistic spent fuel storage rack designs including neutron absorbers, these results imply that AMPX-KENO calculations are conservative and could possibly overpredict reactivity by as much as 2 to 5% Δk, based on a linear extrapolation of observed trends. Statistical analyses in support of these contentions are provided, and additional critical experiments with boron absorbers of higher reactivity worth are recommended.