ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
A. K. Agrawal, R. S. Peckover
Nuclear Science and Engineering | Volume 80 | Number 1 | January 1982 | Pages 32-46
Technical Paper | doi.org/10.13182/NSE82-A21402
Articles are hosted by Taylor and Francis Online.
A method to solve the incompressible Navier-Stokes equations for irregular three-dimensional geometries is developed. The method consists of two stages. The first stage involves a coordinate transformation that regularizes the awkwardly shaped surfaces into planar ones by suitably stretching or “ironing out” uneven surfaces. This change of coordinates converts the physical space into a transformed space, which forms, in general, a nonorthogonal curvilinear system. The resulting Navier-Stokes equations now involve a few additional nonlinear terms but the boundary conditions can now be applied very simply and accurately. The boundary layers near the surface are resolved through the second stage involving another coordinate transformation such that only the boundary layers are broadened without substantially affecting the interior region. This transformation from the transformed space of the first stage to the computational space is orthogonal and results in a concentration of grids near the boundaries only. All of the basic mathematical formulations are given in this paper.