ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
C. Budtz-Jørgensen, H.-H. Knitter
Nuclear Science and Engineering | Volume 79 | Number 4 | December 1981 | Pages 380-392
Technical Paper | doi.org/10.13182/NSE81-A21389
Articles are hosted by Taylor and Francis Online.
The neutron-induced fission cross section of 240Pu was measured in the neutron energy range from 10 keV to 10 MeV using the 7-MV Van de Graaff and the electron linear accelerator of the Central Bureau for Nuclear Measurements as pulsed neutron sources, which delivered monoenergetic and continuous neutron spectra, respectively. The neutron-induced fission events were detected with a parallel plate ionization chamber that provided a fast and narrow output signal allowing nanosecond timing, but where the time integral of the pulse contained, at the same time, the energy information of the ionizing particle. This detector permitted a high discrimination between alpha particles and fission fragments at an alpha emission rate of some 107 s−1. The fission cross-section data below 400 keV are especially remarkable since they were taken with an energy resolution almost one order of magnitude better than any other published data set. In this region, large structures in the fission cross section due to Class II states in the second well of the double-humped fission barrier were found. The spontaneous fission half-life of 240Pu was measured to be (1.15 ± 0.03)·1011 yr.