ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
J. E. Hoogenboom
Nuclear Science and Engineering | Volume 79 | Number 4 | December 1981 | Pages 357-373
Technical Paper | doi.org/10.13182/NSE81-A21387
Articles are hosted by Taylor and Francis Online.
An adjoint Monte Carlo technique is described for the solution of neutron transport problems. The optimum biasing function for a zero-variance collision estimator is derived. A simple approximation to this optimum biasing function has been chosen to arrive at a problem-independent sampling scheme. The transport kernel for the adjoint particles is almost the same as for neutrons. The sampling of the collision kernel needs the introduction of so-called adjoint cross sections. The optimum treatment of an analogon of a one-velocity thermal group has also been derived. The method is extended to multiplying systems, especially for eigenfunction problems to enable the estimate of averages over the unknown fundamental neutron flux distribution. A versatile computer code, FOCUS, has been written, based on the described theory. Numerical examples are given for a shielding problem and a critical assembly, illustrating the performance of the FOCUS code.