ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Nelson Jarmie
Nuclear Science and Engineering | Volume 78 | Number 4 | August 1981 | Pages 404-412
Technical Note | doi.org/10.13182/NSE81-A21375
Articles are hosted by Taylor and Francis Online.
We investigated the accuracy of the basic fusion data for the T(d, n)4He, 3He(d, p)4He, T(t, 2n)4He, D(d, n)3He, and D(d, p)T reactions in the 10- to 100-keV bombarding energy region, and assessed the effects of inaccuracies on the design of fusion reactors. The data base for these reactions /particularly the most critical T(d, n)4He reaction/ rests on 25-yr-old experiments whose accuracy (often assumed to be ±5%) has rarely been questioned: Yet, in all except the D + D reactions, there are significant differences among data sets. The errors in the basic data sets may be considerably larger than previously expected, and the effect on design calculations should be significant. Much of the trouble apparently lies in the accuracy of the energy measurements, which are difficult at low energies. Systematic errors of up to 50% are possible in the reactivity values of the present T(d, n)4He data base. The errors in the reactivity will propagate proportionally into the errors in fusion probabilities in reactor calculations. The 3He(d, p)4He reaction cross sections could be in error by as much as 50% in the low-energy region. The D(d, n)3He and D(d, p)T cross sections appear to be well known and consistent. The T(t, 2n)4He cross section is poorly known and may be subject to large systematic errors. Improved absolute measurements for all the reactions in the low bombarding energy region (10 to 100 keV) are needed, but until they are done, the data sets should be left as they are [except for T(t, 2n)4He data, which could be lowered by ∼50%]. The apparent uncertainties of these data sets should be kept in mind.