ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
Y. Y. Chang, S. K. Loyalka
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 235-250
Technical Note | doi.org/10.13182/NSE81-A21357
Articles are hosted by Taylor and Francis Online.
A computer code TWOLASER has been developed for neutronic calculations of square lattice cells in nuclear power reactors. The computer code, which uses new methods for solutions of the integral transport equation and burnup equations, has been used to assess the accuracy and speed of the LASER code. The new code considers actual two-dimensional geometry of the cell as compared to the one-dimensional approximation used by LASER. Calculations have been performed on a sample problem for a burnup of 10.6 MWd/kg fissile. Results from these calculations show that the one-dimensional approximation used by LASER is good for the sample problem. However, the method used by LASER for the solution of burnup equations is not efficient. A modified version, MLASER, of the LASER code has also been developed in this research. This version uses the one-dimensional approximation of LASER and the new method for the solution of burnup equations, and it also provides good results as compared to the results given by the two-dimensional code. However, for the same accuracy, MLASER is computationally much faster (a factor of 4) than the original LASER program. The code TWOLASER can be used to provide data for benchmarking, and MLASER can be used for the replacement of the original LASER.