ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Takashi Nakamura, Toshiso Kosako
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 168-181
Technical Paper | doi.org/10.13182/NSE81-A21351
Articles are hosted by Taylor and Francis Online.
The skyshine of monoenergetic neutrons directed upward from sources both as a vertically collimated beam and as a point isotropic cone fixed on the ground has been calculated systematically by a Monte Carlo method for distances up to ∼2 km from the source. The energy of the neutrons ranged from 14 MeV to thermal. The calculated skyshine spectra approach an approximate equilibrium having an approximate 1/E dependence in the keV region beyond about a few hundred metres from the source. The total neutron flux Φ(r) and dose D(r) at a distance r from a source are well represented by a simple formula, and D(r) = QDexp(-r/λD)/r, and the constants , and λD are only dependent on the source-neutron energy. In respect to the dependence of , and QD on the upward aperture, θs, of the cone source and λD change very little with θs, but and QD increase with θs, when θs is larger than 30 deg. This simple formula was applied to evaluate the experimental results of skyshine neutron doses from a fast-neutron source-reactor facility and showed nice agreement.