ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Takashi Nakamura, Toshiso Kosako
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 168-181
Technical Paper | doi.org/10.13182/NSE81-A21351
Articles are hosted by Taylor and Francis Online.
The skyshine of monoenergetic neutrons directed upward from sources both as a vertically collimated beam and as a point isotropic cone fixed on the ground has been calculated systematically by a Monte Carlo method for distances up to ∼2 km from the source. The energy of the neutrons ranged from 14 MeV to thermal. The calculated skyshine spectra approach an approximate equilibrium having an approximate 1/E dependence in the keV region beyond about a few hundred metres from the source. The total neutron flux Φ(r) and dose D(r) at a distance r from a source are well represented by a simple formula, and D(r) = QDexp(-r/λD)/r, and the constants , and λD are only dependent on the source-neutron energy. In respect to the dependence of , and QD on the upward aperture, θs, of the cone source and λD change very little with θs, but and QD increase with θs, when θs is larger than 30 deg. This simple formula was applied to evaluate the experimental results of skyshine neutron doses from a fast-neutron source-reactor facility and showed nice agreement.