ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. L. Filippone, S. Woolf, R. J. Lavigne
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 119-136
Technical Paper | doi.org/10.13182/NSE81-A21346
Articles are hosted by Taylor and Francis Online.
A new particle transport theory method has been developed for application in particle streaming and shielding calculations. The method is similar to the SN technique in that discrete directions are used, and the transport medium is divided into spatial mesh cells. However, in addition to the spatial mesh, the entire medium is overlaid with a series of streaming rays. Particles are assumed to travel along these rays until they suffer collisions. The collided fluxes within and at the cell surface are related using a difference approximation technique. The collided particles are then reassigned to streaming rays. Unlike the SN method, differencing approximation schemes are required only for particles that have collided in the cell of interest. Another feature of this method is that a finer angular quadrature set is used for the streaming portion of the transport calculation than is used in the determination of the scattering source. The remaining aspects of the technique parallel those of the SN method. Several test results demonstrating the capability of the method are presented.