ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
K. Wisshak, F. Käppeler
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 58-70
Technical Paper | doi.org/10.13182/NSE81-A21339
Articles are hosted by Taylor and Francis Online.
The neutron capture width of the 27.7-keV s-wave resonance in 56Fe has been determined using a setup completely different from most of the previous experiments. A pulsed 3-MV Van de Graaff accelerator and the 7Li(p,n) reaction served as a neutron source. Capture gamma rays were observed by a Moxon-Rae detector and gold was used as a standard. The samples were positioned at a flight path of only 7.6 to 8.0 cm. This allowed the use of very thin samples avoiding large multiple scattering corrections. Three metallic disks enriched in 56Fe were used with a thickness between 0.6 and 0.15 mm. Events due to capture of resonance scattered neutrons in the detector or surrounding material were completely eliminated by time-of-flight. The result for the capture width is Γγ = 1.01 eV with a statistical uncertainty of 1.3% and a systematic uncertainty of ∼5%.