ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Sterrett T. Perkins, Dermott E. Cullen
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 20-39
Technical Paper | doi.org/10.13182/NSE81-A21336
Articles are hosted by Taylor and Francis Online.
We consider all 25 projectile-target combinations of the particles p, d, t, 3He, and α. We obtained nuclear plus interference elastic cross sections for such interactions by subtracting Coulomb contributions from experimental data. We present evaluated graphs of the following resulting quantities, integrated over center-of-mass scattering cosine: reaction rate, average fractional energy loss per collision, average fractional energy loss per unit path length, and average laboratory scattering cosine. This information can be used to correct energy loss rates due to Coulomb scattering, or in more exact transport calculations that account for large-angle nuclear scattering.