ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. Y. Jiang, X. X. Wu, Y. J. Zhang
Nuclear Science and Engineering | Volume 135 | Number 2 | June 2000 | Pages 177-189
Technical Paper | doi.org/10.13182/NSE00-A2133
Articles are hosted by Taylor and Francis Online.
The experiment was performed on the test loop HRTL-5, which simulates the geometry and system design of the 5-MW nuclear heating reactor developed by the Institute of Nuclear Energy Technology, Tsinghua University. The flow behavior for a wide range of inlet subcoolings, in which the flow experience varies from single- to two-phase, is described in a natural circulation system at different pressures (p = 0.1, 0.24, and 1.5 MPa). Several kinds of flow instability are investigated, including geysering, flashing-related flow instability, and high-frequency flow oscillation at p = 0.1 and 0.24 MPa, as well as low steam quality density wave oscillation at p = 1.5 MPa. The mechanisms of geysering, which has new features, and flashing-related flow instability, which has never been studied well enough in this field, are particularly interpreted. The experimental results show the following: First, for a low-pressure natural circulation system, the two-phase flow is unstable in most inlet subcooling conditions, and the two-phase stable flow can be reached only with very low inlet subcoolings. Second, at high inlet subcoolings, the flow instability is dominated by subcooling boiling in the heated section, and at intermediate inlet subcoolings, it is dominated by void flashing in the adiabatic long riser. Third, in the two-phase stable flow region, the conditions for boiling out of the core, namely, single-phase flow in the heated section and two-phase flow in the riser due to vapor flashing, can be realized. The experimental results are of significance for the design and accident analysis of vessel and swimming pool-type natural circulation nuclear heating reactors.