ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
J. V. Muralidhar Rao, S. M. Lee, M. L. Sharma
Nuclear Science and Engineering | Volume 76 | Number 3 | December 1980 | Pages 351-356
Technical Note | doi.org/10.13182/NSE80-A21326
Articles are hosted by Taylor and Francis Online.
Within the framework of the Abajan, Bazazjantz, Bondarenko, and Nikolaev (ABBN) shielding factor approach, several methods have been proposed in the past for the treatment of resonance shielding of multigroup cross sections in heterogeneous cells of fast reactor lattices. First, the approximations made in the different methods and their interrelationship is briefly reviewed. Then, three recent efficient methods proposed by Bitelli et al., by Tone, and by Kujawski and Protsik are numerically compared by checking against exact fine-group collision probability calculations. It is found that the method of Bitelli et al. may give erroneous results, while the methods of Tone and of Kujawski and Protsik show satisfactory agreement with the exact calculations.