ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NuScale Energy Exploration Center opens at SC State
NuScale Power Corporation’s latest Energy Exploration (E2) Center has opened at South Carolina State University, in Orangeburg. E2 Centers are designed to provide visitors with hands-on experiences in simulated scenarios of operations at nuclear power plants. NuScale has established 10 such centers around the world. The company officially presented the fully installed E2 Center to SC State on May 21, after a collaborative setup and training process was completed.
H. L. Pai, D. G. Andrews
Nuclear Science and Engineering | Volume 76 | Number 3 | December 1980 | Pages 323-330
Technical Paper | doi.org/10.13182/NSE80-A21322
Articles are hosted by Taylor and Francis Online.
The simple statistical model statement relating the yield YP of fission fragments to the effective neutron binding energy , namely YP α exp(−/T), can be used as a basis for parallel developments, one leading to the well-known empirical delayed-neutron statement where Y is the number of delayed neutrons per fission. Repeating the development for prompt neutron emission leads to the analogous result where is the prompt neutrons per fission. This semi-empirical result implies that a semi-logarithmic experimental plot of against (3Z - A) should be a family of straight lines. Currently available experimental results justify this prediction. The theoretical precision of this semi-empirical formula is estimated to be ±10% or better, depending mainly on the part and shape of the fission yield-mass curve taken into account. The existence of the above empirical and semi-empirical formulas strongly suggests that the yield of fission neutrons, as well as their spectrum, can be calculated by using the standard statistical model with non-adjustable parameters.