ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
H. L. Pai, D. G. Andrews
Nuclear Science and Engineering | Volume 76 | Number 3 | December 1980 | Pages 323-330
Technical Paper | doi.org/10.13182/NSE80-A21322
Articles are hosted by Taylor and Francis Online.
The simple statistical model statement relating the yield YP of fission fragments to the effective neutron binding energy , namely YP α exp(−/T), can be used as a basis for parallel developments, one leading to the well-known empirical delayed-neutron statement where Y is the number of delayed neutrons per fission. Repeating the development for prompt neutron emission leads to the analogous result where is the prompt neutrons per fission. This semi-empirical result implies that a semi-logarithmic experimental plot of against (3Z - A) should be a family of straight lines. Currently available experimental results justify this prediction. The theoretical precision of this semi-empirical formula is estimated to be ±10% or better, depending mainly on the part and shape of the fission yield-mass curve taken into account. The existence of the above empirical and semi-empirical formulas strongly suggests that the yield of fission neutrons, as well as their spectrum, can be calculated by using the standard statistical model with non-adjustable parameters.