ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Yakov Ben-Haim
Nuclear Science and Engineering | Volume 75 | Number 2 | August 1980 | Pages 191-199
Technical Note | doi.org/10.13182/NSE80-A21310
Articles are hosted by Taylor and Francis Online.
Reliable and safe operation of a nuclear power plant or any other complex network of flow-connected subunits requires prompt detection and location of failed subunits. An algorithm is described, which performs (in many cases) unambiguous automatic location of single or multiple failures. Types of failures that cannot be located unambiguously are characterized. The algorithm can be applied to networks with a serial array of subunits, with converging or branching nodes or with feedback. An optimal structure of the algorithm is identified that allows the maximal failure locating capability with a minimum of logical or arithmetical manipulation. This is important especially for application to large systems. The dynamic behavior of the algorithm is examined for a simple system.